Rootstrap Blog

Category: Predictive Analytics

Total 2 Posts

From Summarization to Generalization and Prediction

We can make predictions with machine learning by generalizing our data’s pertinent characteristics. Summarizing diverse datasets provides insight that can help produce more relevant generalizations.

Data predictions provide probabilities of future outcomes by mining and analyzing existing data, also called training data. Effective prediction is a mix of engineering, statistics, and intuition. Summarization can help by shaping this intuition. In the generalization phase, we test our training data against new data, called test data, to calculate if our model is good enough to be used in real life. These two processes simplify large multidimensional datasets, so machine learning predictions can be applied to them. This article describes how summarization leads to generalization and then prediction through a real estate example.

Continue Reading

Data Revolution Inside Organizations

How to be prepared for the change that will transform the business landscape forever.

Worldwide access to vast amounts of data has changed the business landscape. Competitive marketing depends on knowing how to manage, process, and analyze that data. This article describes the path organizations need to take from collecting data to maximizing its use.
Today’s organizations are undergoing a challenging transformation process around their technical systems. The static software platforms that might have stored and processed a business’ data are no longer sustainable in the current web environment. Enterprises need cutting-edge technology to collect big data in real-time, analyze that data, and then get the information they need to stay competitive in today’s marketplace.

Continue Reading